
Notes on the power spectrum of noise

Let us start by taking a random process X(t) which is assumed to be stationary (the meaning
of which will become clear as we go along). Typically, the random process is very irregular in
time, something like in the figure shown below. Which as we know in the case of Brownian

motion won’t even be differentiable anywhere!

Now out of experience, we might want to look at the Fourier transform of the noise X(t)
in order to understand it better. But it might not be trivial as X(t) needs to be absolutely
integrable before one can have a Fourier transform which may or may not be the case. On the
other hand, we have the autocorrelation function of this random process which is a much more
powerful tool and also a much smoother function of time. So let us start by having a look
at the autocorrelation function which is defined as taking the value of the random process at
times t0 and t0 + t and multiplying them and then taking the average over all realizations.

Autocorrelation function :=
〈
X(t0)X(t0 + t)

〉
In general, if the random process is stationary, then the autocorrelation function is a function
of time and is expected to die down as t becomes very large.

We also make a further assumption that the random process also has a zero average. If not,
then one has to subtract the mean from the correlation function every time we write it down.
One other assumption which we made and should be kept in mind is that the random process
is taken to be stationary which was also stated in the very beginning. It tells us that only
the time difference matters and the initial time doesn’t matter as far as the random process
is concerned. Now as we are interested in looking at the autocorrelation function,〈

X(t0)X(t0 + t)
〉

=
〈
X(0)X(t)

〉 }
because of stationarity
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We shall have a look at the Fourier transform of the autocorrelation function which turns
out to have a deep connection with what the random process itself does. This is the content of
the so called Wiener-Khinchin theorem. We shall get back to this. But first, we are interested
in computing the quantity :

lim
T→∞

1

2πT

∣∣∣∣∣∣
N∑
i=0

eiωti X(ti) ∆ti

∣∣∣∣∣∣
2

(1)

wherein we are taking the value of the random process at time samples ti and weighting it
with eiωti around the small interval ∆ti and then summing all these pieces from 0 to N for
each sampling event. And then we take the absolute value squared so that it becomes real
and then take it’s time average by dividing the whole equation by 2πT . Finally take the limit
as T → ∞. Consider the above equation for a moment, which in a way is a kind of Fourier
transform of X(t). Now in the limit ∆ti becomes infinitesimal, that is, ∆ti → 0, the above
expression becomes :

= lim
T→∞

1

2πT

∣∣∣∣∣
∫ T

0

dt eiωtX(t)

∣∣∣∣∣
2

(2)

which as we know, is a function of ω.

The reason we are interested in this quantity is because it turns out that the Fourier
transform with respect to time of the autocorrelation function is exactly the quantity that
we’re interested in computing above. This is the Wiener-Khinchin theorem. But before we go
on to prove the theorem, let us keep in mind that the above quantity is defined as the power
spectrum of the random variable X. So

SX(ω)︸ ︷︷ ︸
power spectrum

:= lim
T→∞

1

2πT

∣∣∣∣∣
∫ T

0

dt eiωtX(t)

∣∣∣∣∣
2

(3)

Now as a quick aside, let us define φX(t) and look at one of it’s interesting properties which
we are going to make use of over and over in the proof of the Wiener-Khinchin theorem. So

φX(t) :=
〈
X(0)X(t)

〉
=
〈
X(−t)X(0)

〉
(because of stationarity)

=
〈
X(0)X(−t)

〉
(because these are classical variables)

= φX(−t) (by definition)

(4)

Therefore, we note that in the case of a scalar, stationary process, the autocorrelation function
is a symmetric function of time.

Now let us consider SX(ω) and in particular focus on the absolute value squared of the
integral (wherein we take the expression inside the absolute value and multiply with it’s

2



conjugate) and it’s computation. What follows is just a series of algebraic manipulations and
nothing more. We therefore have :∫ T

0

dt1 e
iωt1

∫ T

0

dt2 e
−iωt2 X(t1)X(t2) (5)

=

∫ T

0

dt1

∫ T

0

dt2X(t1)X(t2) cos ω(t1 − t2) (6)

because X(t1)X(t2) is a symmetric function of t1 and t2 and as we know
∣∣∣∫ T

0
dt eiωtX(t)

∣∣∣2 is

a real function. Hence the imaginary part has to be equal to zero. And because of symmetry,
it so happens that sin ω(t1 − t2) = 0. Going ahead with the calculation, we have :

= 2

∫ T

0

dt1

∫ t1

0

dt2X(t1)X(t2) cos ω(t1 − t2) (7)

Draw a little diagram to convince yourself that this step is correct. After this the obvious
thing to do is to set t1 − t2 = t so that dt2 = −dt and then we have :

= 2

∫ T

0

dt1

∫ t1

0

dtX(t1)X(t1 − t) cos ωt (8)

= 2

∫ T

0

dt

∫ T

t

dt1X(t1)X(t1 − t) cos ωt (9)

wherein the order of integration has been interchanged. Again, do draw a little diagram to
convince yourself that it’s correct. After this the next obvious thing to do is to set t1 − t = t

′

so that dt1 = dt
′

and then we have :

= 2

∫ T

0

dt

∫ T−t

0

dt
′
X(t

′
)X(t

′
+ t) cos ωt (10)

Now here comes the step that can be made rigorous but which we shall avoid for now. We
shall take it for granted but one has to keep in mind that there is nothing wrong in bringing
cos ωt out of the second integral and writing down this next step. We therefore have :

= 2

∫ T

0

dt cos ωt

∫ T−t

0

dt
′
X(t

′
)X(t

′
+ t) (11)

And we already see what’s emerging. We get precisely the structure we need for the correlation
function.

And here’s the step that requires proper justification. If this random process has the
property of ergodicity, namely, it takes on all the values available in it’s sample space given
enough time, typically as t → ∞, then the time average of that integral is equal to the
ensemble average over some prescribed distribution for the stationary variable (which we have
not specified). Hence
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Ergodicity : time average −→
T→∞

ensemble average

Aside : Ergodicity is at the heart of Equilibrium Statistical Mechanics if one thinks
about it. If one wants to compute time average of some quantity, we assume that given
enough time, all accessible microstates are accessed by the system and hence it is taken
to be the same as finding ensemble average over some prescribed distribution which one
has to find.
One computes ensemble averages and measures time averages. And the article of faith
is that one is equal to the other. This is ergodicity. But for a random process, one has
to check if that process is ergodic.

Now assuming the process to be ergodic, we have :

lim
T→∞

1

T

∫ T

0

dt
′
X(t

′
)X(t

′
+ t) =

〈
X(t

′
)X(t

′
+ t)

〉
(12)

This tells us that the expression for power spectrum of the random variable simplifies to :

SX(ω) := lim
T→∞

1

2πT

∣∣∣∣∣
∫ T

0

dt eiωtX(t)

∣∣∣∣∣
2

(13)

From (11) and (12) along with all the calculations that we did earlier, we see that :

SX(ω) = lim
T→∞

1

2πT
2T

∫ T

0

dt cos ωt
〈
X(t

′
)X(t

′
+ t)

〉
(14)

=
1

π

∫ ∞
0

dt
〈
X(t

′
)X(t

′
+ t)

〉
cos ωt (15)

=
1

π

∫ ∞
0

dt
〈
X(0)X(t)

〉
cos ωt (16)

because of stationarity. This further implies

=
1

2π

∫ ∞
−∞

dt
〈
X(0)X(t)

〉
cos ωt (17)

=
1

2π

∫ ∞
−∞

dt eiωt
〈
X(0)X(t)

〉
�

Hence this completes the proof of the Wiener-Khinchin theorem which states that the Fourier
transform with respect to time of the autocorrelation function of the random variable is equal
to the power spectrum of that random variable. This is sometimes mistaken to be the definition
of the power spectrum of a random variable but one has to remember that (3) is the definition
of the power spectrum of a random variable and it is not trivial to show that it is equal
to the Fourier transform with respect to time of the autocorrelation function of that random
variable. As we now know, the Wiener-Khinchin theorem helps us in making such a non-trivial
statement.

4


